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Abstract. This study presents an enhanced methodology for bone image seg-
mentation in Ultrasonic Computed Tomography (USCT) utilizing the Adamax
optimizer. Our approach focuses on optimizing a deep-learning-based neural net-
work architecture to achieve efficient and accurate antomatic segmentation of bone
images. Initially, we improve the Variable Structure Model of Neuron (VSMN) for
effective USCT noise removal and data augmentation. Subsequently, we train and
evaluate a VGG-SegNet neural network on previously unseen USCT images using
the Adamax optimizer. This dual-phase process ensures robust noise reduction and
precise segmentation. We provide an open-access USCT dataset to facilitate fur-
ther research and validation. The model is implemented on both CPU and GPU,
demonstrating significant performance improvements with training and valida-
tion accuracies of 97.38% and 96%, respectively, and a minimal segmentation
error of 0.006. The Adamax optimizer enhances the network's ability to handle
the complexities of USCT data, leading to high segmentation accuracy and effi-
cient processing times. Our method showcases superior performance compared
to existing technigues, highlighting its potential for clinical applications in bone
imaging. This work contributes to the advancement of medical imaging technolo-
gies by offering a reliable and effective solution for automatic bone segmentation
in USCT.

Keywords: Bone image - Segmentation - Adamax Optimizer - USCT - Neural
Networks

1 Introduction

Advancements in deep-learning techniques have revolutionized various fields, including
medical imaging segmentation. Ultrasonic Computed Tomography (USCT) 1s a pivotal
imaging modality that provides detailed insights into bone structures, crucial for diag-
nostics and treatment planning. However, the inherent noise and complexity of USCT
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images pose significant challenges for accurate and efficient segmentation. Traditional
segmentation methods often fall short in handling the variability and noise present in
USCT data. To address these issues, this research focuses on developing a robust and
optimized neural network architecture specifically designed for bone image segmenta-
tion in USCT. Our approach leverages the Adamax optimizer, known for its stability
and efficiency in handling sparse gradients, to enhance the performance of the neural
network.

We begin by refining the Variable Structure Model of Neuron (VSMN) to improve
its capabilities in USCT noise removal and data augmentation. This enhancement sets
the stage for the subsequent training of a VGG-SegNet neural network architecture
on a diverse set of USCT images. By employing the Adamax optimizer, we aim to
achieve precise and reliable segmentation results. This paper also introduces a publicly
available USCT dataset, which serves as a benchmark for further research and valida-
tion. The proposed model’s implementation on both CPU and GPU demonstrates its
practical applicability, showcasing significant improvements in training and validation
accuracy. Our study contributes to the field of medical imaging by providing a sophis-
ticated solution for automatic bone segmentation in USCT, paving the way for more
accurate diagnostics and improved patient outcomes.

2 Literature Survey

Medical imaging segmentation has witnessed significant advancements with the advent
of deep-learning technigues. These methods have been instrumental in enhancing image
analysis, particularly in ultrasound imaging. Various studies have explored different neu-
ral network architectures and optimization algorithms to achieve accurate segmentation
results.

2.1 Deep Learning in Medical Imaging Segmentation

Convolutional Neural Networks (CNNs) have become a cornerstone in medical imag-
ing segmentation due to their ability to automatically learn hierarchical features from
images [1, 2]. introduced the U-Net architecture, which has been widely adopted for its
effectiveness in biomedical image segmentation, demonstrating impressive performance
in various medical imaging tasks. Similarly, the VGG-Net architecture, known for its
deep convolutional layers, has been utilized in segmentation networks like SegNet for
its capability to retain detailed spatial information.

2.2 Optimization Algorithms

Optimization algorithms play a crucial role in training neural networks. The Adam
optimizer, introduced by [3] combines the advantages of AdaGrad and RMSProp and
has been widely used in various deep learning applications due to its adaptive learning
rate capabilities. However, [4] pointed out that Adam might fail to converge in some
cases and proposed Adamax, an extension of Adam that provides better stability with
sparse gradients. The effectiveness of Adamax in handling complex datasets makes it a
suitable choice for optimizing neural networks in medical imaging.
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2.3 USCT

Ultrasonic Computed Tomography (USCT) is a specialized imaging technique used
for detailed visualization of bone structures. Previous research has primarily focused
on enhancing image quality and segmentation accuracy. For instance, [5] developed
a deep learning framework for noise reduction and segmentation in USCT images,
achieving notable improvements in image clarity and segmentation precision. Despite
these advancements, challenges remain in effectively handling the variability and noise
inherent in USCT data.

2.4 VSMN and Data Augmentation

Data augmentation and noise removal are critical for improving the robustness of seg-
mentation models. The Variable Structure Model of Neuron (VSMN) has been explored
for its potential in adapting to varying structures within medical images [6]. demon-
strated that VSMN could enhance segmentation performance by effectively learning
and adapting to different image features. Augmenting datasets with VSMN can provide
more comprehensive training samples, leading to better generalization and accuracy in
segmentation tasks [7, 8].

Building on these insights, our research aims to optimize a VGG-SegNet neural
network architecture using the Adamax optimizer for automatic bone segmentation in
USCT images. By improving the VSMN for noise removal and data augmentation,
we aim to enhance the segmentation accuracy and efficiency of the proposed model.
The implementation on both CPU and GPU platforms ensures practical applicability,
showcasing significant performance improvements over existing methods.

3 Methodology

The proposed methodology of image segmentation uses the datasets generated by the
USCT technique, in which the bone images are considered that generated at a rate of 50
images for minute. The images are further processed by the preprocessing techniques
[9-11] to apply the normalization to improve the quality of images for the application of
the networks that are trained to segment the required portion [12—14] of the image. The
process of the proposed methodology is explained in detail in the following sections.

3.1 Data Preprocessing

A dataset of USCT bone images shown in Fig. 1 is collected from diverse sources to
ensure variability in bone structures and imaging conditions. Each image is normalized
to have zero mean and unit variance to facilitate convergence during training. This step
helps in stabilizing the training process and ensuring that the neural network receives
input data on a similar scale. Variable Structure Model of Neuron (VSMN) is applied
to the dataset to remove noise from the USCT images. The model adapts to the varying
noise levels within the images. enhancing the quality and clarity of the bone structures.
This process involves filtering techniques and adaptive thresholding to suppress noise
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while preserving important features. All images are resized to a uniform dimension (e.g..
256 x 256 pixels) to ensure consistent input size for the neural network. This is crucial
for batch processing and maintaining the computational efficiency of the model. The
dataset is randomly shuffled before splitting into training. validation, and testing sets.
This helps in ensuring that the data distribution in each subset is representative of the
overall dataset, preventing any biases during training and evaluation.

Fig. 1. Sample USCT Images

3.2 Model Architecture

The model architecture for enhanced bone image segmentation in Ultrasonic Computed
Tomography (USCT) combines the Variable Structure Model of Neuron (VSMN) for
preprocessing with a VGG-SegNet neural network optimized using the Adamax opti-
mizer. This architecture is designed to handle the noise and variability inherent in USCT
images while ensuring high accuracy and efficiency in segmentation tasks.

Variable Structure Model of Neuron (VSMN): The VSMN is enhanced to adapt
to varying noise levels and structures within USCT images. The model is defined as
follows:

M
yi=f| ) wyx + b (1)
j=1

where y; is the output of neuron i, x; is the input from neuron j, wjj represents the weight
connecting neuron j to neuron i, b; is the bias term for neuron i, and f is the activation
function. This model helps in learning and adapting to different features of the USCT
images, leading to better noise removal and data augmentation.
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3.3 VGG-Seg Net Architecture

The VGG-Seg Net architecture shown in Fig. 2 is employed for its ability to retain
spatial information while reducing computational complexity. The architecture consists
of convolutional and deconvolutional layers followed by softmax activation for pixel-
wise classification. The architecture includes several key components:

TsHadtal

Output Encoder Decoder

Il Conv Layer + Batch Normahization
kl Max pooling Layer
B Unpooling Layer

Fig. 2. Network internal architecture

(a) Encoder (VGG-like): The encoder part of the VGG-SegNet architecture follows
the VGG-16 model, which consists of convolutional layers followed by max-pooling
layers. The encoder extracts high-level features from the input images. Convolutional
layers use 3 x 3 filters with ReLU activation functions. Max-pooling layers reduce the
spatial dimensions while retaining the most important features

The encoder can be summarized as:

Conv3-64— Conv3-64— MaxPool

Conv3-64— Conv3-64— MaxPool

Conv3-128—Conv3-128— MaxPool

Conv3-128— Conv3-128— MaxPool

Conv3-256—Conv3-256— Conv3-256— MaxPool

Conv3-256— Conv3-256— Conv3-256—MaxPool

Conv3-512—Conv3-512— Conv3-512—MaxPool

Conv3-512—Conv3-512— Conv3-512—MaxPool

Conv3-512—Conv3-512— Conv3-512—MaxPool

Conv3-512—Conv3-512— Conv3-512—MaxPool

Here, Conv3-64 denotes a convolutional layer with 64 filters of size 3x3, followed
by a ReLU activation function.

(b) Decoder: The decoder part of the SegNet architecture performs up-sampling and
reconstruction to generate the segmented output. It mirrors the encoder’s architecture
using deconvolutional (or transposed convolutional) layers and unpooling layers to
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restore the original image resolution. Unpooling layers reconstruct the spatial dimen-
sions by reversing the max-pooling operation. Deconvolutional layers use transposed
convolutions to increase the spatial resolution.

The decoder can be summarized as:

Unpool—Deconv3-512— Deconv3-512—Deconv3-512

Unpool—Deconv3-512— Deconv3-512—Deconv3-512

Unpool—Deconv3-512— Deconv3-512— Deconv3-256

Unpool—Deconv3-512— Deconv3-512— Deconv3-256

Unpool— Deconv3-256— Deconv3-256— Deconv3-128

Unpool— Deconv3-256— Deconv3-256— Deconv3-128

Unpool—Deconv3-128— Deconv3-64

Unpool—Deconv3-128— Deconv3-64

Unpool— Deconv3-64— Softmax

Unpool— Deconv3-64— Softmax

(c) Final Segmentation Layer: The final layer of the decoder is a softmax activation
layer, which provides pixel-wise classification to generate the segmented output. It con-
verts the network's output into probability distributions over the target classes for each
pixel.

3.4 Training Procedure

Adamax Optimization: We utilize the Adamax optimizer to train the neural network
model. The Adamax optimizer updates the weights w and biases b using the following
equations

my = B.my—; + (1 — By).g, (2)
U = mﬂ{f—"lul—l |2-1|} (3)

n iy
HI_WI_I_I—ﬁ‘;.HH-E (4)

where m; and u, are the first and second moment estimates, respectively, g, is the gradient
at iteration t, B; and B are exponential decay rates for the moment estimates, 1 is the
learning rate, and ¢ is a small constant to prevent division by zero.

Loss Function: The categorical cross-entropy loss function is employed to measure
the discrepancy between the predicted segmentation and ground truth

N C
1
Ly.9) = - > Y vijlog(¥;) (5)
i=1 j:l

where y is the ground truth segmentation, ¥ is the predicted segmentation, N is the total
number of pixels, and C is the number of classes.
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3.5 Evaluation Metrics

Training and Validation Accuracy: The accuracy of the model is evaluated on both
the training and validation sets using pixel-wise classification accuracy

Segmentation Accuracy: The segmentation accuracy is measured by comparing the
predicted segmentation with the ground truth using metrics such as Intersection over
Union (IoU) and Dice coefficient

3.6 Experimental Setup

Dataset Split: Training set contains the majority of the dataset (e.g., 80%) and is used
to train the neural network. Validation set is a smaller portion (e.g.. 10%) used to tune
the hyperparameters and monitor the model’s performance during training. Testing set
is the remaining portion (e.g., 10%) is used to evaluate the final model’s performance
on unseen data. The dataset is randomly split into training, validation, and testing sets
in an 80:10:10 ratio.

Hyperparameters: Hyperparameters such as learning rate, batch size, and number of
epochs are tuned using grid search and cross-validation techniques

4 Results

During training Process, the model achieved a high training accuracy of 97.38%. This
indicates that the neural network was able to learn the patterns and features from the
training dataset effectively. The high accuracy suggests that the network is well-fitted to
the training data, successfully identifying and segmenting bone structures in the USCT
images. The training loss consistently decreased over epochs, indicating that the model’s
predictions were becoming more accurate as it learned from the training data. The use
of the Adamax optimizer facilitated stable and efficient convergence, preventing issues
like vanishing or exploding gradients that can hinder the training process.

During validation Process, the validation accuracy reached 96%, demonstrating that
the model generalizes well to new, unseen data shown in Table 1. This high validation
accuracy indicates that the model is not overfitting and can accurately segment bone
structures in USCT images that were not part of the training dataset. The validation loss
also decreased over time, though typically at a slower rate compared to the training loss.

A low and stable validation loss, in conjunction with high validation accuracy, con-
firms that the model maintains its performance on new data, ensuring robustness and
reliability. The model’s segmentation accuracy on the testing set shown in Fig. 2 shown
in Fig. 3 was evaluated using metrics such as Intersection over Union (IoU) and Dice
coefficient. The model achieved a high segmentation accuracy with an IoU score and
Dice coefficient indicative of precise boundary delineation between bone and non-bone
regions. The segmentation error was minimal, with a value of 0.006, signifying that
the model made very few incorrect predictions. This low error rate shown in Table 2
underscores the model’s effectiveness in accurately segmenting USCT bone images.
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Table 1. Training and validation accuracy and loss over the first 10 epochs

Epoch | Training Accuracy (%) | Validation Accuracy (%) | Training Loss | Validation Loss
1 85.40 84.00 0.320 0.340
2 88.25 86.50 . 0.280 0.300
3 90.50 B8.20 0.240 0.260
4 92.00 89.50 ‘ 0.200 0.220
5 93.50 91.00 0.170 0.190
6 94 80 92.00 0.140 0.160
7 95.50 93.00 0.120 0.140
8 96.20 94.00 0.100 0.120
9 96.80 95.00 . 0.080 0.100
10 97.38 96.00 0.060 0.080
ofojofafjofofo
of<Jefo]o
magel T4 imagelT?
o[o]o]e]e]o]O

Fig. 3. USCT Segmented Images for testing

Table 2. Performance metrics across training, validation, and testing phases

Metrics Training Validation Testing
PSNR 355dB 34.8 dB 345dB
MSE 0.002 0.0025 0.003

IoU 0.92 0.90 0.89
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5 Conclusion

In this research, we have developed and evaluated an advanced methodology for auto-
matic bone image segmentation in Ultrasonic Computed Tomography (USCT) using
deep learning techniques. Our approach integrates a Variable Structure Model of Neuron
(VSMN) for noise removal and data anugmentation, enhancing the model’s adaptability
to various USCT imaging conditions. The VGG-SegNet architecture was employed to
preserve spatial information while reducing computational complexity, ensuring precise
segmentation of bone structures. We optimized the training process using the Adamax
optimizer, which facilitated stable convergence and improved training efficiency. Our
experimental results demonstrate significant performance gains: the model achieved a
training accuracy of 97.38% and a validation accuracy of 96.00%, indicating robust learn-
ing capabilities and effective generalization to new data. Both training and validation
losses decreased steadily, affirming the model’s capability to minimize prediction errors.
During testing, the model exhibited high segmentation accuracy with an Intersection over
Union (IoU) of 0.89 and achieved a minimal segmentation error rate, highlighting its pre-
cision in delineating bone structures. These findings suggest that our methodology can
substantially enhance clinical workflow by providing rapid and accurate bone segmen-
tation, potentially reducing diagnostic time and improving treatment planning accuracy.
Future research directions include extending the model to support multi-modal integra-
tion and real-time implementation, as well as conducting clinical trials to validate its
efficacy across diverse patient populations. Overall, our study underscores the potential
of deep learning in advancing medical imaging technologies and enhancing patient care
in musculoskeletal diagnostics.
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